

IEA SHC Task 48 / IEA SHC Task 53 Solar Cooling monitoring and assessment

Daniel Neyer⁽¹⁾, Alexander Thür⁽¹⁾

University of Innsbruck Unit Energy Efficient Buildings Innsbruck AUSTRIA

Solar Heating and Cooling can be complex

Rating systems for Solar Heating and Cooling

gas heating system	component
Conventional chiller and	Solar heating and cooling

- Fair key figure ... comparable with SEER?
- How to combine gas and electricity in one key figure?
- Benchmarks for and against
 - Solar cooling
 - Conventional system

\rightarrow Technical and economic evaluation Excel TOOL

Introduction

- Several Key Performance Indicators developed in IEA SHC Task 48 and adapted for IEA SHC Task 53
 →Efficiency on building & component level
 →Electricity / Primary Energy / CO2 Emissions
- Excel Tool for evaluation of systems
 →Technical assessment
 →Indicative economic analysis
- 10 examples were collected in Task48

Technical Assessment – Selected Key Figures

- Seasonal Performance Factor (SPF)
 - Electrical SPFel
 Thermal SPFth
 SPF_{el} = \frac{\Sigma Q_{out}}{\Sigma Q_{el,in}}
 SPF_{th} = \frac{\Sigma Q_{out}}{\Sigma Q_{in}}

 Equivalent Seasonal Performance Factor (SPFequ) primary energy flows expressed in electrical equivalent units used to compare with any (non-) renewable system

$$SPF_{equ} = \frac{\sum Q_{out}}{\sum Q_{el,in} + \sum \frac{\varepsilon_{el} * Q_{th,in}}{\varepsilon_{in}}}$$

Arbeitsbereich

Energieeffizientes Bauen

universität innsbruck

Technical assessment – boundary

Systems & components

Technical and economic data available for

	components
Solar Thermal	Flat Plate Collector
Collectors (SC)	Evacuated Tube Collector
Photovoltaic (PV)	Photovoltaic Panels
	 BOS (balance of system)-components
Heating (H1, H2)	Natural Gas Boiler
	Pellets Boiler
	Heat Pump (not reversible/reversible)
	 Absorption Heat Pump (not reversible/reversible)
	Combined Heat&Power Plant
	District Heating (as heat source)
Cooling (C1, C2)	Air-Cooled Vapour Compression Chiller
	Water-Cooled Vapour Compression Chiller
	 Absorption Chiller (Single Effect & Double Effect)
	Adsorption Chiller
	District Cooling (as cold source)
- Storage	Hot Storage
(HS, CS, BS)	Cold Storage

NEYER, Thür

SUB-system Efficiency

Electrical efficiency of thermal cooling

SUB-system Efficiency

Electrical efficiency of thermal cooling

Labelling

- 4 sub-system's and building performance!
- Rated Primary Energy savings of (non-renewable)

$$f_{sav.NRE.PER.i} = 1 - \frac{PER_{NRE.ref.i}}{PER_{NRE.i}}$$

SUB-system vs. system

Indicative Economic Analysis

- Method & input values based on VDI- and EN-standards
- Annualized costs for
 - Investment
 - Replacement & residual value
 - Maintenance & service
 - Operational costs (energy, water)

→ Levelized costs of energy (Cooling + Space Heating + Domestic Hot Water)

 $cost ratio = \frac{levelized \ costs \ SHC}{levelized \ cost \ REF}$

Economic base (I)

Economic base (II)

Economics	
Period under consideration	25 a
Credit period	10 a
Inflation rate	3 %

Energy costs	
Electricity (energy)	10 ct/kWh
Electricity (peak power)	80 €/kW.a
Natural gas	5 ct/kWh
Water	2.5 €/m³

Cost Competitiveness!

Conclusions

- Sub-systems vs. Building performance
- Overall performance depends on
 - Component efficiency
 - System design
 - Control strategies
- Efficiency of solar cooling:
 - Electrical: SPF_{el} >15
 - Primary Energy Savings >50%
- Cost competitiveness is possible!

Thank you for your attention!

Daniel Neyer

University of Innsbruck Unit Energy Efficient Buildings Technikerstr. 13 6020 Innsbruck

daniel.neyer@uibk.ac.at

0043 512 507- 63652