Arbeitsbereich Energieeffizientes Bauen universität innsbruck

IEA SHC Task 53 – Subtask C Technical and economic assessment TOOL

Universität Innsbruck Energieeffizientes Bauen

Daniel Neyer, Alexander Thür University of Innsbruck Unit Energy Efficient Buildings Innsbruck AUSTRIA

Bettina Nocke, AEE INTEC Feldgasse 19, 8200 Gleisdorf

Rating systems for Solar Heating and Cooling

gas heating system	component
Conventional chiller and	Solar heating and cooling

- Fair key figure ... comparable with SEER?
- How to combine gas and electricity in one key figure?
- Benchmarks for and against
 - Solar cooling
 - Conventional system

\rightarrow Technical and economic evaluation Excel TOOL

Introduction

- Several Key Performance Indicators in TOOL
 →Efficiency on building & component level
 →Electricity / Primary Energy / CO2 Emissions
- Excel Tool for evaluation of systems
 →Technical assessment
 →Indicative economic analysis

Technical Assessment – Selected Key Figures

 Equivalent Seasonal Performance Factor (SPFequ) primary energy flows expressed in electrical equivalent units used to compare with any (non-) renewable system

$$SPF_{equ} = \frac{\sum Q_{out}}{\sum Q_{el,in} + \sum \frac{\varepsilon_{el} * Q_{th,in}}{\varepsilon_{in}}}$$

Fractional savings (fsav_PRE-NRE)
 For non renewable Primary Energy
 Compared with REF System
 T53 standard: natural Gas / air cooled VCC

$$f_{sav.PER} = 1 - \frac{PER_{ref}}{PER_{SHC}}$$

Indicative Economic Analysis

- Method & input values based on VDI- and EN-standards
- Annualized costs for
 - Investment
 - Replacement & residual value
 - Maintenance & service
 - Operational costs (energy, water)

→ Levelized costs of energy (Cooling + Space Heating + Domestic Hot Water)

 $cost ratio = \frac{levelized \ costs \ SHC}{levelized \ cost \ REF}$

Results from T48 vs. T53!

Results from T48 vs. T53!

More DETAILS

@ Workshop...

Assessment Tool

Main Target:

- \rightarrow system assessment & evaluation
- → Comparison of SHC & Reference Systems
- → Overall system & subsystem
- → Labelling / Benchmarking

Adaption from T48 to 53

Difference T48 – T53

- SOL = ST or PV or ST+PV
- More components and complex systems
 - Bivalent,
 - PV, CHP, revHP
 - ...
- More Reference systems are available
 - Efficiency (based on monthly average load)
 - District heating
 - Electrical
 - Oil
 - ...

Difference T48 – T53

- Additional Useful Energy
 - district heating (DH)
 - District cooling (DC)
 - Domestic electricity (DE)
- 10 sub systems evaluated
 - Overall system (DHW+SH+C+DH+DC+DE)
 - DHW / DHWsol
 - SH / SHsol
 - C / Csol
 - DH / DHsol
 - DC / DCsol

Difference T48 – T53

- Analysis / Assessment on monthly energy balance
 - Efficiency η,
 - Primary energy factor ε
 - …on a monthly base!
- Economics for all components
 - Investment costs
 - Maintenance
 - Residual / replacement
 - Energy / water
 - Feed in Tariff for: Electricity (PV, CHP), District Heating/Cooling

Energieeffizientes Bauen

Technical assessment – boundary

Systems & components

Technical and economic data available for

	components
Solar Thermal	Flat Plate Collector
Collectors (SC)	Evacuated Tube Collector
Photovoltaic (PV)	Photovoltaic Panels
	 BOS (balance of system)-components
Heating (H1, H2)	Natural Gas Boiler
	Pellets Boiler
	Heat Pump (not reversible/reversible)
	Absorption Heat Pump (not reversible/reversible)
	Combined Heat&Power Plant
	District Heating (as heat source)
Cooling (C1, C2)	Air-Cooled Vapour Compression Chiller
	Water-Cooled Vapour Compression Chiller
	Absorption Chiller (Single Effect & Double Effect)
	Adsorption Chiller
	District Cooling (as cold source)
Storage	Hot Storage
(HS, CS, BS)	Cold Storage

NEYER, Thür

SYSTEM - PER_{NREsys}

Slide: 16

Slide: 17

SUB system - SOLAR COOLING - PER_{NRE,Csol}

Slide: 18

KPIs – don't mix them up...

Comparing thermal and electrical driven System...

- PV + VCC $\rightarrow SPF_{el.C} = SPF_{equ.Csol} > SPF_{equ.C}$
- ST&ACM + VCC \rightarrow SPF_{el.thC} > SPF_{el.C} SPF_{el.thC} = SPF_{equ.Csol} \neq SPF_{equ.C}
- ST&ACM + HB \rightarrow SPF_{el.thC} \neq SPF_{equ.C}
- ...a lot more in documentation....

Example - Feistritzwerke

- 65m² ST, 19kWc, 300kW DH
- ...
- → excel TOOL

Discussion

- Examples
- Reference
- Costs
- To be included as default: Spain? .??
- …???

- Paper Eurosun!?
 - Abstract
 - Paper
- Tool
 - Sub system calculations
 - Check different systems
 - Update: how to use ppt...
- Documentation
 - To be updated...
 - Examples could be included?

09/2016

24/04/2016

05/16

06-07/16

Thank you for your attention!

Daniel Neyer

University of Innsbruck Unit Energy Efficient Buildings Technikerstr. 13 6020 Innsbruck

daniel.neyer@uibk.ac.at

0043 512 507- 63652